PhD Studentship: Nano-textured multicrystalline silicon solar cells

University of Southampton - Sustainable Electronic Technologies

Crystalline silicon is currently the dominant photovoltaics (PV) technology, accounting for over 90% of the global PV market. Of this, multicrystalline silicon (mc-Si) accounts for over 60% and is predicted to continue to be an important wafer technology for PV. Traditionally, optical losses in mc-Si solar cells have been reduced using a combination of acid texturing and a thin film antireflection coating. This type of texturing relies on the damage caused by the traditional multiwire slurry wafer sawing technique to initiate the formation of surface features. With the introduction of diamond-wire sawing (DWS) to reduce kerf-loss in wafer production, the saw damage is greatly reduced and so traditional acid texturing is no longer effective. There is therefore a need for texturing methods that can be used on DWS mc-Si wafers to minimise optical losses whilst being compatible with industrial solar cell processes.

We are looking for a PhD student to join our team at the University of Southampton’s Department of Electronics and Computer Science to investigate the use of metal assisted chemical etching (MACE) for texturing of DWS mc-Si wafers to reduce optical losses. This is a technique whereby noble metals with higher electronegativity than Si, such as Au, Ag, and Cu, are used to chemically etch the Si surface through a redox reaction. The resulting nano-textured surfaces are a form of “black silicon” due to their excellent light capturing properties.

You will explore techniques for passivating these highly textured surfaces, study the effects of encapsulation of the antireflective surface under polymer and glass layers and examine the light scattering/trapping properties of the structures created. There is also scope for investigating metal contact formation on the nano-textured surfaces, moving towards full cell fabrication and testing. You will make use of the extensive fabrication and characterisation facilities available at the Southampton Nanofabrication Centre cleanroom facility (http://www.ecs.soton.ac.uk/zepler-institute-cleanroom-facilities), and support your experimental investigations with optical and electrical modelling. The project will benefit from the close involvement of Tetreon Technologies Ltd., the UK’s leading manufacturer of industrial tools for fabrication of photovoltaic cells. Tetreon will advise on the industrial compatibility of the processes being developed and assist in development of test equipment.

This 4 year studentship includes tuition fees, a stipend to cover living expenses and a generous Research Training Support Grant for research consumables, travel and conference attendance. Furthermore, you will join the fifth cohort of the Centre for Doctoral Training in New and Sustainable Photovoltaics (http://www.cdt-pv.org/). This is a unique PhD programme whereby you will receive bespoke training from seven of the UK's leading PV research groups in the form of 2 week residential courses throughout the first year. This will enable you to engage with a very wide range of academic and industry experts within the field of photovoltaics and form an extensive network of colleagues and research contacts.

To be eligible for this studentship, you will have or be predicted a first or upper second-class degree in physics, chemistry, electronic engineering, materials science or a related discipline. This studentship is only available to UK/EU applicants. For more information on eligibility please refer to www.epsrc.ac.uk/skills/students/help/eligibility/.

For further information on the project and how to apply, please email Stuart Boden (sb1@ecs.soton.ac.uk).

Share this PhD
     
  Share by Email   Print this job   More sharing options
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

PhD

Location(s):

South East England