PhD Studentship: Tidal Flows in Extrasolar Planets and Stars

University of Leeds

Value: This project is open to self-funded students and is eligible for funding from the School of Mathematics Scholarships, EPSRC Doctoral Training Partnerships, and Leeds Doctoral Scholarships.

All successful UK/EU and international applicants will be considered for funding, in an open competition across the School of Mathematics. To be considered for this funding, it is recommended to apply no later than 31 March 2018 for funding to start in October 2018. However, earlier applications are welcome, and will be considered on an ongoing basis.

Number of awards: 1

Deadline: 31 March 2018

Supervisor(s): Contact Dr Adrian Barker to discuss this project further informally.

Project description

Since 1995 astronomers have discovered and partially characterised several thousand extrasolar planets. Many of these planets have masses similar to Jupiter’s, and orbit their host stars in only a few Earth days -- a fascinating class of planets that we refer to as hot Jupiters. Since these planets orbit their stars very closely, gravitational tidal interactions between the planet and star can determine the orbits of these planets, and the spins (axial rotations) of the planet and its host star. A familiar example of tides, much closer to home, is the interaction between the Earth and the Moon, which results in a gradual lengthening of both the day and month.

This project will investigate some of these effects using a combination of computer simulations and theoretical (analytical) calculations, with the aim to understand tidal flows in stars and in the fluid layers of planets. The ultimate goal of this research is to explain astrophysical observations and make predictions to be tested by future observations. The group in Leeds is one of the leading groups in the field of Astrophysical and Geophysical Fluid Dynamics (https://agfd.leeds.ac.uk), and is actively engaged in research on a wide range of topics including planetary and extrasolar planetary dynamics (the geodynamo, planetary dynamos, tidal interactions between planets and stars, planet formation), solar and stellar dynamics (solar and stellar dynamos, hydrodynamic and magnetohydrodynamic instabilities, turbulence), as well as galactic and extragalactic dynamics on the largest scales.

Entry requirements

Applications are invited from candidates with or expecting a minimum of a UK upper second class honours degree (2:1), and/ or a Master's degree in a relevant subject such as (but not limited to) mathematics.

How to apply

Formal applications for research degree study should be made online through the university's website. Please state clearly in the research information section that the PhD you wish to be considered for is the ‘Tidal flows in extrasolar planets and stars’ as well as Dr Adrian Barker as your proposed supervisor.

If English is not your first language, you must provide evidence that you meet the University's minimum English Language requirements.

If you require any other information please contact the Graduate School Office e: math.pgr.admissions@leeds.ac.uk

We welcome scholarship applications from all suitably-qualified candidates, but UK black and minority ethnic (BME) researchers are currently under-represented in our Postgraduate Research community, and we would therefore particularly encourage applications from UK BME candidates.  All scholarships will be awarded on the basis of merit.

Share this PhD
     
  Share by Email   Print this job   More sharing options
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

PhD

Location(s):

Northern England