Back to search results

PhD Studentship - Droplet Adhesion on Liquid-Repellent Surfaces

University of Birmingham - School of Mechanical Engineering

Qualification Type: PhD
Location: Birmingham
Funding for: UK Students, EU Students, International Students
Funding amount: £15,009
Hours: Full Time
Placed On: 25th June 2019
Closes: 25th September 2019

A PhD student position funded at UK/EU rate is available to work on droplet wetting and adhesion behaviours in the group of Dr Nan Gao within the Department of Mechanical Engineering, University of Birmingham. 

Wetting’ refers to the behaviour of a liquid when deposited on a surface. Many practical applications depend on our understanding of wetting. These include analytical systems, synthesis of advanced materials, protein crystallization, biological assays, etc. A number of studies have been devoted to adhesion forces, for example, between liquid droplets and solid surfaces with specialised wettability. Evidence suggests that droplet wetting behaviours are related to its interfacial forces and dynamics but this is not fully understood. For example, the interfacial properties and stabilities due to droplet adhesion/friction (mobility) depend on droplet size, motion (rolling or sliding), state (attached or detached), etc. An ability to control adhesion at the droplet level will regulate coalescence, assist contents mixing, and enable fast sorting in combination with analysis tools. The next generation of wetting applications will require precise control and manipulation of individual droplets and will bring together soft matter physics, materials science and mechanical engineering. To achieve this, we need a better understanding of how droplet adhesion develops, not only at the onset of motion but also in a complex dynamic process. 

The PhD student is expected to develop a protocol for experimental measurement of droplet adhesion forces following Dr Gao’s recent work on droplet motion (Gao et al., Nat Phy 2018). In addition, the PhD student will design and fabricate materials with liquid-repellent surface properties. By means of controlling droplet adhesion and motion, the student is expected to manipulate their spreading and separation behaviours, for example, at a multi-phased interface where one phase (e.g. oil) spreads and even penetrates through the interface easily while the other phase (e.g. water) is simultaneously repelled. 

Students from a relevant discipline (Mechanical Engineering, Physics, and Chemistry) with strong research interest are encouraged to apply for the studentship. For informal enquiries, please contact Dr Nan Gao (

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


PhD tools
More PhDs from University of Birmingham

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge