Back to search results

PhD Studentship: Unravelling the Mysteries of Air Quality above Polar Snow and Ice Using the Isotopic Fingerprints of Reactive Nitrogen (FREY_UBAS20ARIES)

University of East Anglia - School of Environmental Sciences

Qualification Type: PhD
Location: Cambridge
Funding for: UK Students, EU Students
Funding amount: Not Specified
Hours: Full Time, Part Time
Placed On: 7th October 2019
Closes: 7th January 2020

Start date: October 2020 

Hours: Full Time or part time  

Studentship length: 3.5 years

Supervisor: Dr Markus Frey (https://www.bas.ac.uk/profile/maey/)

Project description:  

SCIENTIFIC BACKGROUND

Climate and environment in polar and high-altitude regions are particularly sensitive to anthropogenic perturbation. Understanding the natural processes in the background atmosphere is essential to assess the human contribution to environmental change. Examples are the nitrogen oxides NO and NO2, which alter concentrations of ozone (O3), a pollutant and greenhouse gas, and the hydroxyl radical (OH), which is responsible for the removal of many other atmospheric pollutants (e.g. CO, CH4). Nitrous acid gas (HONO) is a particularly reactive nitrogen species, related to NO and NO2, which has been observed previously at surprisingly high levels in air above snow, suggesting a large snowpack source may be present. The aim of this project is to quantify HONO emissions with an optical technique (LOPAP instrument) and to use isotopic techniques (15N/14N, 18O/16O and 17O/16O ratios) to trace reactive nitrogen formation and loss processes in polar regions. 

RESEARCH METHODOLOGY

You will use a combination of state-of-the art methods and instruments to measure the concentration, fluxes and isotopic composition of reactive nitrogen species (HONO, NOx, HNO3, NO3– separated using filters and annular denuders) above snow and ice in lab experiments at BAS Cambridge and the UEA Roland von Glasow Air-Sea-Ice Chamber, and potentially in the field at a station operated by BAS in coastal Antarctica. You will interpret your observations with a numerical air-snow model to quantitatively understand the composition of the atmosphere above snow, to study the relationship between HONO and NOx as well as their conversion to HNO3 and NO3–, with the ultimate goal to improve global chemistry-climate models. 

TRAINING

You will be part of dynamic research teams at BAS and UEA, which are working on a wide range of environmental topics in the polar regions. You will receive full training in the relevant instruments and sampling techniques, modelling and fieldwork. You will attend an atmospheric sciences summer school and receive support to publish results in peer-reviewed journals and at international conferences. 

Person Specification:  

First degree in Chemistry, Physics or related Earth/Environmental Science. 

Experience in experimental work and good numerical skills (e.g. knowledge of Matlab, Python or equivalent) is desirable. 

Funding notes:   

This project has been shortlisted for funding by the ARIES NERC Doctoral Training Partnership, and will involve attendance at mandatory training events throughout the course of the PhD. Shortlisted applicants will be interviewed on 18/19 February 2020. Successful candidates who meet UKRI’s eligibility criteria will be awarded a NERC studentship - UK and EU nationals who have been resident in the UK for 3 years are eligible for a full award. Excellent applicants from quantitative disciplines with limited experience in environmental sciences may be considered for an additional 3-month stipend to take advanced-level courses in the subject area. For further information, please visit www.aries-dtp.ac.uk 

   
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from University of East Anglia

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge