Back to search results

PhD Studentship - Modelling Hydrogel Mechanics

The University of Manchester - Department of Mathematics

Qualification Type: PhD
Location: Manchester
Funding for: UK Students, EU Students
Funding amount: £15,609
Hours: Full Time
Placed On: 17th May 2021
Closes: 17th August 2021

University of Manchester – Department of Mathematics

3.5 year PhD studentship covering fees and stipend (£15,609 in 20201 -22).

Available to applicants Worldwide. 

Preferred start date September 2021. Also available to start in January 2022 or April 2022.


Dr. Tom Shearer

Professor Alberto Saiani

Project Title

Modelling Hydrogel Mechanics

Project Description

One of the key engineering challenges in the life science and biomedical sectors is the design and manufacturing of bespoke scaffolds for 3D cell culture, tissue engineering and cell/drug delivery, i.e. cell niches. These cell niches underpin a large and growing sector of biotech and biomed industries, whether they are used in vitro to study cell behaviour, or in vivo to promote regeneration of damaged tissues. Significant efforts have been made to develop novel biomaterials to build such scaffolds. One such class of material, which has attracted significant interest, is hydrogels, as these soft, highly hydrated materials can be engineered to mimic the cell niche. It is important to understand hydrogel mechanics, as a cell’s behaviour depends strongly on its mechanical microenvironment.

Hydrogels consist of networks of crosslinked, hydrophilic polymer chains, which, when hydrated, form a soft solid with highly nonlinear, viscoelastic mechanical properties. In this project, we will build a model of how the structure of these networks impacts upon the macroscale mechanics of the hydrogel. At the microscale, we will build a discrete model, whereby each fibre to fibre crosslink defines a node in the network, with the connectivity of the nodes being captured via an adjacency matrix. We will assume that the fibres connecting the nodes resist motion only once taut and will investigate how different assumptions about their constitutive behaviour impacts on the network as a whole. Finally, we will couple the microscale model to a continuum level constitutive equation to describe the macroscale mechanics.

Academic background of candidates

Applicants are expected to hold, or be about to obtain, a minimum upper second class undergraduate degree (or equivalent) in Mathematics or a related subject (for example Physics, Engineering or Materials Science). Experience in solid mechanics (e.g. elasticity, viscoelasticity) is desirable. 

Contact for further Information

Tom Shearer,

Alberto Saiani,,

Link to Apply

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


PhD tools
More PhDs from The University of Manchester

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge