The maritime continent: Breaking the tropical barrier to global weather and climate prediction (MATTHEWS_UENV17EE)

University of East Anglia - School of Environmental Sciences

Start Date: October 2017

No. of positions available: 1

Supervisor: Prof Adrian Matthews

Project description:  
Scientific background
Global weather and climate patterns are strongly controlled from the tropics.  For example, the extreme wet, mild winter in the UK of 2013/14 has been linked to weather activity in the “tropical warm pool”, the region of very warm ocean that extends from the Indian Ocean eastwards into the western Pacific. The main weather system responsible for these effects is the Madden-Julian Oscillation (MJO; http://envam1.env.uea.ac.uk/mjo.html).  At the heart of the warm pool lies the maritime continent, a complex archipelago of large and small islands that includes the countries of Indonesia, Malaysia, Philippines and Papua New Guinea. These islands act as a physical barrier to weather systems in the region. For example, some MJO weather systems succeed in crossing the maritime continent, while others do not.  The effects on subsequent global weather development can be very different between these two cases.

Research methodology
You will determine the atmospheric and oceanic processes that control the maritime continent barrier in climate and weather. This will be achieved by analysis of state-of-the-art high-resolution global observational data sets, and experiments with global climate models. 

Training and research environment
You will join an active research group at UEA in tropical meteorology, oceanography and climate, and will collaborate with the tropical and global meteorology group at the National Centre for Atmospheric Science (Climate) at University of Reading. You will be trained in meteorological, oceanographical and climate theory, and in the theoretical and practical aspects of climate analysis of very large data sets (substantial in-house training, and a python Climate Data Analysis Tools (CDAT) training workshop), and computer modelling of weather and climate (MetUM training workshop).  You will have the opportunity to present your work at an international conference.

Person specification:  We seek an enthusiastic, pro-active student with strong scientific interests and self-motivation. You will have at least a 2.1 honours degree in physics, mathematics, meteorology, oceanography or environmental science with good numerical ability. Experience of a programming language such as python or matlab will be advantageous. This project will suit an applicant intending to start a scientific career in meteorology, oceanography or climate science.

Funding notes: This project has been shortlisted for funding by the EnvEast NERC Doctoral Training Partnership, comprising the Universities of East Anglia, Essex and Kent, with twenty other research partners.

Shortlisted applicants will be interviewed on 14/15 February 2017.

Successful candidates who meet RCUK’s eligibility criteria will be awarded a NERC studentship. In most cases, UK and EU nationals who have been resident in the UK for 3 years are eligible for a full award. In 2016/17, the stipend was £14,296.

For further information, please visit www.enveast.ac.uk/apply

Share this PhD
     
  Share by Email   Print this job   More sharing options
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

PhD

Location(s):

South East England