PhD Studentship - The Use of 3D in Vitro Models of Human Salivary Glands to Study the Pathogenesis of Disease

University of Sheffield - School of Clinical Dentistry

Saliva is produced by three pairs of major salivary glands and multiple minor glands in the lips, associated with the tongue and also with the palate. Saliva starts the digestion of food, helps to keep the mouth moist so that we can talk, keeps the mouth clean by washing extra material, including food, out and contains proteins able to control the normal flora of the mouth; both the number and types of bacteria present.

There are some clinical situations in which we stop producing saliva, for example if the glands are damaged by radiotherapy or chemotherapy given as treatment for cancer, or if we suffer from the autoimmune disease Sjögren’s syndrome where the glands are irreparably damaged. Reduced salivary flow makes it very difficult to talk, to swallow food and the mouth can become infected with bacteria, viruses and/or fungi. These infections can quickly spread into the blood stream and, in extreme cases, be fatal.

Salivary gland biology is not well understood and any research into any associated diseases is severely hampered by the lack of useful research models and tools.

It has not previously been possible to study the onset or early stages of disease and thus our recent research has involved the development of 3D in vitro models of both major and minor salivary glands with the aim of using them to further our understanding of salivary gland development and to investigate the pathogenesis of salivary gland diseases. The models have been characterised in terms of cell genotype and phenotype and culture conditions have been adapted to allow the models to mimic, as closely as possible, the in vivo situation.

This follow-on project will use the 3D models to study the development of salivary glands, and thus provide vital information needed to "grow" new glands to replace those irreparably damaged. We also aim to use the models to study the development and progression of salivary gland disease, particularly the damage caused by bacterial and viral infections, and to determine how cancers develop in salivary glands. Currently there is no immune component to the model but this project will involve the addition of inflammatory cells such as macrophages, neutrophils and lymphocytes.

Salivary gland disease is a very understudied area but one where the consequences of disease can be extremely serious.

Entry Requirements

Candidates must have a first or upper second class honors degree or significant research experience.

Funding Information

Covers fees and stipend.

Share this PhD
  Share by Email   Print this job   More sharing options
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:



Northern England