PhD Studentship - Bioinspired Optical Sensors

University of Birmingham - School of Chemical Engineering

Competition Funded PhD Project (Students Worldwide)

Application Deadline: Applications accepted all year round

Supervisor: A.K. Yetisen

Project Description

Dynamic structural coloration in Tmesisternus isabellae beetle elytra and Morpho butterflies are unique examples of Bragg stack-based wavelength tuning in response to external stimuli. The underlying principles could guide the design of quantitative optical stimuli-responsive polymers. Existing nanofabrication techniques to create such materials are costly, time-consuming, and require expertise.

The aim of this project is to develop a nanofabrication method to produce slanted Bragg stack structures in hydrogel films by combining laser interference lithography and silver halide chemistry in a cost-effective and rapid process. The Bragg stacks will consist of silver bromide nanocrystal multilayers. Upon broadband light illumination, the Bragg stacks will diffract a narrow-band peak. To demonstrate the utility of this method, the Bragg stacks will be functionalised with analyte-sensitive molecules. The developed Bragg stacks may have application in portable, wearable, and implantable real-time medical diagnostics at point-of-care settings.

The successful student will form part of a multidisciplinary team and will be supervised by Dr. Ali K. Yetisen based in the Institute of Translational Medicine ( and the School of Chemical Engineering at the University of Birmingham.

Funding Notes

Students must have an undergraduate degree or master’s degree in engineering, chemistry, physics, materials science or a closely related subject.

University of Birmingham scholarships are available for exceptional UK/EU students. Self-funded international students are welcome to apply this post. Potential candidates should contact Dr. Ali K. Yetisen ( and include a CV. Applications will be evaluated on an on-going basis until the position is filled.


Laser Interference Lithography for the Nanofabrication of Stimuli-Responsive Bragg Stacks. Advanced Functional Materials. DOI: 10.1002/adfm.201702715 (2018)

Share this PhD
  Share by Email   Print this job   More sharing options
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:



Midlands of England