Back to search results

PhD: Adaptive Control of Functional Electrical Stimulation (FES)

University of Salford - University of Salford and Shandong BetR Medical Technology Co. Ltd.

Qualification Type: PhD
Location: Salford
Funding for: International Students
Funding amount: £15,824
Hours: Full Time
Placed On: 11th October 2018
Closes: 6th January 2019

The studentship is fully funded and includes:

  • A fee waiver
  • A stipend of  £15,824 p.a. for three and a half years
  • All bench fees and consumable costs
  • Funds specifically allocated for conference travel

Final date for applications: 6th January 2019

Interviews in late January 2019


After stroke, many people cannot use their affected arm, and this has considerable impact on their quality of life. A major problem for stroke rehabilitation is the limited availability of physiotherapists. Therefore, home-based rehabilitation systems that do not require the presence of a therapist are needed to give the best chance of recovery through motor relearning.

Functional Electrical Stimulation (FES) of muscles is a low cost solution, which directly activates paralysed muscles through electrical stimulation via skin-surface electrodes. Although recent studies have reported significant success, the problem with existing FES systems is that they require specialist skills to set up, particularly for upper limb rehabilitation, and therefore require clinical engineering involvement for each patient. The challenge for the future is to enable home use without supervision by a therapist, which would require a system that could, to some extent, replace the therapist’s role of: a) monitoring the patient’s short-term progress; b) adapting the exercise regime accordingly; and c) providing the patient with real-time feedback on their performance. This is particularly challenging and the PhD project will focus on solving two connected problems:

Intelligent monitoring of patient task performance

The aim will be to use body-worn sensors during FES-supported therapy sessions to derive measures describing task performance, including poor coordination, speed of task execution, smoothness of movement, and movement variability. These will then be used for real-time biofeedback purposes, providing the patient with information on their task performance during the therapy session. To achieve this, powerful regression algorithms will be used to map the body-worn sensor signals onto the aforementioned variables of interest. To allow the regression algorithms to operate more successfully, be resilient to noise and variability, and adapt to different patients, fast signal pre-processing techniques will be employed prior to the regression stage.

Adaptive control of FES support so that patients are always being challenged

As the patient improves, the FES controller should adapt in real-time so that the patient must still strive to achieve the task goals. At present FES control parameters are adjusted manually, by trial and error, and it is unclear how this can be formalised so that it can be automated. To solve this problem you will apply machine learning techniques including:

  1. Using a rule-based system based on the results of knowledge elicitation from a group of FES specialists.
  2. Using machine-learning methods that can automatically learn from FES specialists.


Candidates should have a first or upper second-class honours degree in an area relevant to the proposed research. This includes engineering, physics, mathematics or computer science. Candidates with other closely related first degrees should contact Prof Howard to discuss their eligibility.

For full details of student requirements and specification please visit:

Informal enquiries may be made to Prof David Howard by email:

A curriculum vitae and supporting statement, explaining your motivation and interests, should be sent to

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


PhD tools
More PhDs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge