Back to search results

Data Scientist in Fintech (KTP Associate)

Manchester Metropolitan University - School of Computing, Maths and Digital Tech

Location: Manchester
Salary: £28,000 - £34,000 (depending on experience)
Hours: Full Time
Contract Type: Fixed-Term/Contract
Placed On: 6th December 2018
Closes: 17th December 2018
Job Ref: eArcu-1099

An exciting opportunity has become available to work full time on an 18 month Knowledge Transfer Partnership (KTP) to embed a machine learning capability within the company to enhance existing cash forecasting solutions and support significant business growth. You will work with data science and machine learning techniques to process, visualise, gain insights, identify patterns and trends, and make predictions on financial, multivariate time series data.

Company Information:

AccessPay (AP) is a cloud-based financial technology business. AP has been recognised by Deloitte as one of the 50 fastest growing tech companies in the UK and the fastest growing Fin-tech company outside of London. AP‘s software allows businesses to automate payment transactions more quickly and securely through one platform. Recent launches include a real-time cash management and analytics tool (BankSense), which is aimed at meeting the needs of global corporations, and a pro-active fraud detection tool, monitoring transactions and payments for anomalous behaviour. Typical clients are corporates with an annual turnover >£100 million.

Qualification Requirements:

An MSc in Computer Science, Artificial intelligence, Statistics, Mathematics, Data Science, Economics, or related discipline. Candidates with a good (Hons) degree in a relevant subject such as Data Science or Computer Science with evidence of a conducting a project in data science would also be considered.

Experience and Knowledge Requirements:

It is expected that the candidate has experience with creating fully reproducible and documented end-to-end data science pipelines in a suitable ecosystem (preferably, Python) and familiar with data science techniques such as data extraction, exploration, cleaning, visualisation, as well as model building with inferential statistics and machine learning. Ideally, the candidate has also some experience with techniques for handling and forecasting time series data (e.g., ARIMA) and with deep learning.

Some knowledge of SQL and NoSQL databases is desirable.  In addition, the candidate should be comfortable with performing software design, implementation, testing, and version control (e.g., with git and GitHub).

The candidate is expected to have excellent oral and written communication skills with the ability to lead a project from the technical/scientific perspective and to produce research outputs as academic papers publishable at top venues. Some other personal attributes looked for are:

  • Capable of working in a team environment.
  • Capable of working independently, taking direction, making decisions and managing workload.
  • Curious and inquisitive by nature and excelling at storytelling through analysis of data.
  • Enthusiastic and self-motivated.
  • Capable of communicating complex concepts in a clear manner to a wide-ranging audience.


  • £3,000 to spend on personal training over the course of the project;
  • Attendance at two residential managerial workshops (each of one week’s duration);
  • Opportunity to register on a higher degree (at a reduced or no cost);
  • Opportunity of a permanent position with the company; 70% of host companies make a permanent job offer to their Associate at the end of the project. 

For an informal discussion, please contact Luciano Gerber ( or Dr Keeley Crockett (

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


Job tools
More jobs from Manchester Metropolitan University

Show all jobs for this employer …

More jobs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge