Back to search results

PhD Studentship in Computational Chemistry

The University of Manchester - Electronic Structure and Bonding in f Element Molecules at Ambient and High Pressures

Qualification Type: PhD
Location: Manchester
Funding for: UK Students, EU Students
Funding amount: Not Specified
Hours: Full Time
Placed On: 15th February 2019
Closes: 14th May 2019
 

Supervisor: Prof Nik Kaltsoyannis, School of Chemistry

Email: nikolas.kaltsoyannis@manchester.ac.uk

Research group website: www.mub.eps.manchester.ac.uk/kaltsoyannisgroup

Project description

The f block is vital to modern society. The 4f (lanthanide) elements lie at the heart of many key technologies, e.g. phosphors and lighting (europium); high-strength magnets for electronics, hybrid vehicles and wind turbines (neodymium); optoelectronics (neodymium, erbium); magnetic resonance imaging (gadolinium); automobile catalytic converters (cerium). The 5f (actinide) series features two elements (uranium and plutonium) that are central to nuclear power production. We need to know as much as we possibly can about the chemistry of these fascinating elements.

Solids show different compressibility depending on the type of bonding (ionic vs covalent) in the material, and the bonding and properties of f element-containing materials can be changed by pressure. Indeed, pressure has proven to be a useful tool to understand the behaviour of the 5f orbitals of uranium and plutonium compounds. In this PhD project you will use computational molecular quantum chemistry (based on density functional and ab initio theories) in conjunction with analysis tools such as the Quantum Theory of Atoms-in-Molecules, Natural Bond Orbital and Energy Decomposition Analysis to probe covalency, and weak interactions between metals and solvent/ligand peripheral groups, in a range of molecular compounds of the 4f and 5f elements at ambient and high pressures. For representative examples of the type of problem to be addressed, and the methodology to be employed, please see Angewandte Chemie International Edition 54 (2015) 6735 and Dalton Transactions 48 (2019) DOI: 10.1039/C8DT05094E.

The computational chemistry of the f block remains challenging, for two principal reasons: (i) relativistic effects (the modification of atomic orbital energies vs non-relativistic analogues, and spin-orbit coupling) - which can either be neglected or accommodated with only simple approximations and corrections for light atoms - have a significant effect on 4f and 5f element chemistry, and must be explicitly included in calculations, and (ii) the near degeneracy of several sets of valence atomic orbitals (e.g. for the actinides 5f, 6d, 7s and 7p) can lead to a plethora of closely-spaced electronic states which pose formidable electron correlation challenges. In this project you will learn how modern computational chemistry can overcome these challenges, and apply your skills to cutting-edge problems in molecular f element chemistry.

Availability

The position is available from September 2019 and is funded for 3.5 years. It is open to UK/EU citizens only.

   
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from The University of Manchester

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge