Back to search results

PhD Studentship: Fibre-integrated ORCA quantum memory

University of Bath - Physics

Qualification Type: PhD
Location: Bath
Funding for: UK Students, EU Students
Funding amount: £15,009 UKRI annual stipend (2019/20 rate) + tuition fees + training support grant
Hours: Full Time
Placed On: 15th March 2019
Closes: 25th April 2019

Lead Supervisor: Dr Josh Nunn, Department of Physics, University of Bath

Project description:

Photonic quantum networks would enable quantum computing, guaranteed-secure communications and enhanced sensing capabilities, running at high bandwidths in ambient conditions

To exploit the full potential of photonic networks, the capability to switch and re-time optical signals is required. But this has proved challenging for quantum signals, since amplification adds noise at the quantum level, and so passive losses must be carefully eliminated. Conventional photonic switching and storage solutions based on electro-optical phase modulation and bulk non-linearities are too lossy or not suitable for operation at the level of individual light quanta.

A promising route to fast, low-loss, quantum-compatible fibre-integrated switching devices is the incorporation of atomic vapour into hollow fibres. This is the focus of the proposed PhD project.

In recent work at Oxford, GHz bandwidth photons were stored in, and retrieved from, a warm alkali vapour, via off-resonant cascaded absorption (ORCA) [Kaczmarek et al. Phys. Rev. A 97.4 042316 (2018)]. The same protocol has since been implemented at the Weizmann Institute [Finkelstein et al. Science advances 4.1 eaap8598 (2018)] and at the University of Adelaide [Perella et al. unpublished communication (2018)]. In parallel work at Bath, in partnership with NQIT and TMD Ltd., we have explored the use of hollow-fibre vapour cells for magnetometry and atomic clocks. In this project, the student will further develop this initial work, with the aim of splicing fibre vapour cells directly into single-mode fibres, and demonstrating fibre-integrated light storage via ORCA at the quantum level.

The student will be based at the Centre for Photonics and Photonic Materials (CPPM) at the University of Bath, and supervised by Dr. Josh Nunn.

The work will proceed in close collaboration with the group of Dr. Pete Mosley (CPPM director) and forms part of the UK Quantum Technology Programme, under the aegis of the Phase II Hub in Quantum Simulation and Quantum Computation, in which Bath Physics is participating.


Applicants should hold, or expect to receive, a First Class or high Upper Second Class UK Honours degree (or the equivalent qualification gained outside the UK) in a relevant subject. A master’s level qualification would also be advantageous.


Informal enquiries should be directed to Dr Josh Nunn,

Formal applications should be made via the University of Bath’s online application form:

Please quote the supervisor’s name and project title in the ‘Your research interests’ section.

For more information about applying for a PhD at Bath, see:

Anticipated start date: 30 September 2019.


A fully-funded studentship is available for an excellent UK or EU student who has been resident in the UK since September 2016.  Funding will cover UK/EU tuition fees, maintenance at the UKRI Doctoral Stipend rate (£15,009 per annum, 2019/20 rate) and a training support grant for 3 years.

Applicants classed as Overseas for tuition fee purposes are NOT eligible for funding; however, we welcome all-year-round applications from self-funded candidates and candidates who can source their own funding.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


PhD tools
More PhDs from University of Bath

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge