Back to search results

PhD Studentship: Nanomaterials-based Energy Storage for Self-powered IoT Devices

University of Surrey

Qualification Type: PhD
Location: Guildford
Funding for: UK Students, EU Students
Funding amount: £15,000
Hours: Full Time
Placed On: 17th April 2019
Closes: 30th September 2019

Studentship description

Energy generation and storage are key for future electronic devices that can entirely self-power from ambient light, vibrations, radio-waves and temperature differences. To support billions of new sensors and devices forecast to be part of the Internet-of-Things (IoT), efficient and low-cost energy storage solutions are required. Recent progress in functional nanomaterials coupled with advanced printing fabrication techniques have opened up possibilities for the development of cost-efficient, solution-processed printed electronic device. 

The advancements in conducting, semiconducting and dielectric nanoparticle inks can be used to create multi-functional electronic circuit and devices that are flexible, light-weight and with very low carbon footprint. This technology is particularly well-suited for the IoT devices with sensor and transmission capabilities, aiming for very low-power consumption and utilising energy-harvesting packaging. The challenge remains to develop efficient energy storage with high power and energy densities, that is fully integrated with projected energy scavengers based on rectannaes and photovoltaics. 

In this project, we will aim to develop flexible, ultra-thin supercapacitors for IoT devices, utilising ink-jet printable functional nanomaterials. Devices will benefit from nano-structured electrodes, based on very high area templated surfaces and solution processable metal-oxides. Micro-porosity of the films will be enhanced by the growth of hierarchical nanostructures with optimised surface area to increase electrode-electrolyte interactions. The project will involve screening and characterisation of nanomaterials, device fabrication and testing and energy storage optimisation, and full integration with energy harvesters on plastic foils. 

This is a three year project, commencing in October 2019. 

Entry requirements

  • Good masters or 1st class undergraduate degree and strong background in either of the disciplines: electronic engineering, physics, materials, physical chemistry
  • Outstanding hands-on and analytical skills
  • Demonstrated excellent aptitude for research

Funding

The studentship will fully cover University fees for the duration of the project, with a stipend of approx. £15,000 per annum for UK and EU citizens. Self-funded applicants are welcome to apply.

How to apply

Candidates are asked to contact Dr Maxim Shkunov in the first instance. Applications should be submitted online through the link available on Electronic Engineering PhD web page: www.surrey.ac.uk/postgraduate/advanced-technology-institute-phd 

Closing date for applications Saturday, July 20, 2019

Application enquiries Dr Maxim Shkunov, m.shkunov@surrey.ac.uk 01483686082

   
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from University of Surrey

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge