Back to search results

PhD Studentship Opportunity in The effect of Non-neutral Winds on Wind Power Aerodynamic

University of Surrey

Qualification Type: PhD
Location: Guildford
Funding for: UK Students, EU Students, International Students
Funding amount: University fees are fully covered with a stipend of £14,057 per year, tax free, in line with research councils.
Hours: Full Time
Placed On: 13th June 2019
Closes: 1st October 2019

Renewable sources provided 29.3% of the electricity generated in the UK in 2017, with offshore wind turbines producing some 21% of that, and registering an increased capacity of 27% during the same year [1]; these trends are predicted to grow in line with 2030 and 2050 targets [2]. As our society becomes ever-more dependent on wind power, it is increasingly important to gain a deeper understanding and more accurate predictability of the wind power availability, the aero-elastic loads on the wind turbine blades, and the associated issues of turbine control. 

According to the sector deal of the UK government “offshore wind is intended to deliver 30GW of by 2030” [3]. This target is only achievable if one considers, as expected, a drastic increase in size and capacity of both single wind turbines and wind farms; it becomes, therefore, ever more important to the industry to develop reliable and fast prediction tools to estimate the potential of wind energy extraction and the static and dynamic loads on the turbine blades and rotor torque. This is because as wind turbines grow in size [3], they tend to occupy a larger portion of the Atmospheric Boundary Layer (ABL), and therefore, the larger turbine blades are subject to increasingly significant non-uniform and unsteady incoming flow conditions. Similarly, stable boundary layers (e.g. night time) are typically much shallower than their neutral counterparts; therefore, the length scales characterising the wind turbine and the ABL become comparable. With increasing size, it also becomes more important how the flow is correlated across the streamtube ahead of a turbine – assuming that the turbulence is coherent (i.e. highly correlated) can result in drastically overburdening the structure of the turbine, with a substantial loss in aerodynamic efficiency. 

This studentship will focus on the characterization of wind turbine wakes in different atmospheric conditions, and in particular, at their interaction through a series of wind tunnel tests. It is envisaged that three-dimensional laser doppler anemometry will be used in conjunction with other measurement techniques, whilst also measuring the power output of the wind turbines. 

Entry requirements

1st or upper 2nd class degree is required in a subject appropriate to the PhD projects applied for (please see project descriptions). Candidates with a lower class of Bachelors degree, but a good performance at the Masters level ("merit" or above) will also be considered. 

Evidence of your proficiency in English if it is not your first language

Funding

University fees are fully covered with a stipend of £14,057 per year, tax free, in line with research councils.

How to apply

Applicants should apply through the Aerodynamic and Environmental Flow course page https://www.surrey.ac.uk/postgraduate/aerodynamic-and-environmental-flow-phd. Please clearly state the studentship title on your application.

Closing date for applications

1st October 2019              

Application enquiries

Dr Marco Placidi, m.placidi@surrey.ac.uk, +44 (0)1483 684632

   
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from University of Surrey

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge