Back to search results

PhD Studentship Opportunity in Real Time Complex Scene Segmentation and Prediction in Urban Environments

University of Surrey - Vision, Speech and Signal Processing

Qualification Type: PhD
Location: Guildford
Funding for: UK Students, EU Students
Funding amount: £18,000 to £19,500 stipend, pa (tax free)
Hours: Full Time
Placed On: 24th June 2019
Closes: 24th September 2019

Semantic image segmentation describes the process of associating each pixel of an image with a class label (such as flower, person, road, sky etc). The purpose of which is to distil the complexities of a high-resolution image containing millions of pixels to a lower level representation where image understanding can be achieved. Historically single image segmentation has been performed with probabilistic models although the current state of the art uses deep learning approaches. Many of the recent datasets for automotive vision contain hand labelled semantic segmentations where images are labelled in terms of road, road markings, buildings, vehicles, pedestrians, cyclists, and street furniture. 

This project will focus on real time, complex urban sematic segmentation where the temporal evolution of the scene is used to increase segmentation accuracy. Although the dynamics of the scene can be used in segmentation they can also be used to predict the evolution of the scene and the future actions of other road users. Importantly this would allow an AI vision system to process an incoming video stream in real time, break that scene into its constituent components and answer questions such as “what do we expect the scene to look like in 5 seconds?”

The project will investigate the use of spatiotemporal sematic segmentation and prediction of actions of other road users in the context of SAE level 4-5 autonomous vehicles. But specifically, it will focus on inner city/urban driving. It will focus on the computer vision tools for segmentation and reasoning about scene content and motion with integration into ROS and testing on our autonomous testbed. 

The PhD is located within the Centre for Vision Speech and Signal Processing (CVSSP) at the University of Surrey but will involve close collaboration and internship opportunities at Jaguar Land Rover in Warwick. CVSSP is an internationally recognised leader in audio-visual machine perception research. With a diverse community of more than 150 researchers, we are one of the largest audio and vision research groups in the UK. You will join around 50 other postgraduate research students conducting research across a broad range of research areas in vision and deep learning. 

This is 4 year project, starting in October 2019. 

Entry requirements

  • A first class or 2:1 honours degree (or equivalent overseas qualification) in an appropriate discipline (e.g. engineering, computer science, signal processing, applied mathematics, and physics) 
  • You should be able to demonstrate excellent mathematical, analytic, programming skills 
  • Previous experience in computer vision, machine/deep learning, or augmented reality would be advantageous. 
  • IELTS 6.5 or above (or equivalent) with no sub-test of less than 


This is a 4 year industrial case studentship with an increased stipend of £18-19.5K pa (tax free) with additional funds for travel, equipment and consumables for UK students only. It will also cover Home/EU tuition fees for the duration of study.

How to apply

Applications should be sent through the PhD course page: Please clearly state the studentship title on your application. For enquiries contact Prof Richard Bowden ( indicating your areas of interest and including your CV with qualification details (copies of transcripts and certificates).

Application enquiries

Professor Richard Bowden 01483 689838

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


PhD tools
More PhDs from University of Surrey

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge