Back to search results

Fully Funded PhD Scholarship: Developing Electrochemical Sensors For Disinfection By-Products (DPB) Detection In Water

Swansea University - Chemical Engineering

Qualification Type: PhD
Location: Swansea
Funding for: UK Students, EU Students
Funding amount: This scholarship covers the full cost of UK/EU tuition fees and an annual stipend of £15,009
Hours: Full Time
Placed On: 4th November 2019
Closes: 31st January 2020

Start date: April 2020

Project description: 

One of great challenges in drink water safety is the increasing public concern with the contamination of carcinogenic disinfection by products (DBP), since chemical disinfection (e.g. chlorination) is widely adopted and referred to as the single process able to prevent water-borne disease (or pathogenic) outbreaks by the EU Drinking Water Directive. For example, DBP N-nitrosodimethylamine (NDMA) has been classified as “probably carcinogenic to humans” by the International Agency for Research on Cancer. Detection and quantitation of these key markers of water quality and safety require sensitive analytical techniques to satisfy the current, but also upcoming regulations.

For water utility companies, typical process to test these DBPs takes three days, including solid phase extraction (SPE), HPLC-MS and GC-MS for NDMA analysis. These analyses require the transportation of water samples to a lab, and is also expensive (e.g. £200 per sample for NDMA) and labour intensive. Quick turnaround time from sampling to analytical result is a further unmet imperative where contamination of water supplies is suspected. As part of the most recent "internet of things" and digital water technology adoption, there will be a trend towards providing real-time data and actionable information to all parties involved. Imagine providing consumers with real-time water quality data in addition to consumption metrics. It will be also the tipping point in a move from centralized water quality monitoring to instead providing real-time actionable information for service engineers, stakeholders and customers. This project will develop a single ultrafast sensor screening platform for in-situ detection of carcinogenic DBP by incorporating pattern recognition algorithms developed using artificial neural network method.

Project supervisors: Dr Wei Zhang and Professor K S Teng 

Eligibility

Candidates should hold a first or upper second class (2.1) honours degree in Chemical or Biochemical Engineering, or a related discipline (e.g. chemistry, biochemistry, physics, or other engineering discipline). Candidate with a Master’s degree in Chemical, Environmental or Materials Engineering are preferred.

Experience in water quality analysis, nanomaterials synthesis and/or electrochemistry is required.

We would normally expect the academic and English Language requirements (IELTS 6.5 or equivalent result) to be met by point of application. For details on the University’s English Language entry requirements, please visit – http://www.swansea.ac.uk/admissions/english-language-requirements/

Due to funding restrictions, this scholarship is open to UK/EU candidates only.

   
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from Swansea University

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge