Back to search results

PhD Studentship: Experimental Measurements of Gas Turbine Stator Well Flow and Heat Transfer

University of Bath - Mechanical Engineering

Qualification Type: PhD
Location: Bath
Funding for: UK Students, EU Students
Funding amount: UKRI stipend £15,285 (2020/21 rate), UK/EU tuition fees, TSF £1,000 per annum for up to 3 years
Hours: Full Time
Placed On: 6th April 2020
Closes: 6th July 2020

Supervisory team:  Dr James Scobie & Professor Gary Lock 

Project enquiries:  jas28@bath.ac.uk 

Project: 

Industrial gas turbines are the most fuel-efficient electrical power generation machines in the world. The latest generation of engines have reached combined-cycle thermodynamic efficiencies in excess of 60%. Secondary-air (cooling) systems have a fundamental role in determining this efficiency, as well as the operating lifetime and integrity of turbine components. 

To increase the power output and efficiency - and consequently to reduce the fuel consumption and CO2 production - of gas turbines, it is fundamentally necessary to increase the temperature of the gas entering the turbine. This presents a challenge for designers: the higher the temperature, the larger the demand from cooling systems with an increasing detrimental effect on the engine efficiency and operating life of highly-stressed rotating components. 

This research will investigate the complex flow and heat transfer occurring in gas turbines, aiming to improve current design methods and understanding in industry. The programme will build an experimental facility which simulates engine-representative conditions, with modular geometric features to explicitly assess design criteria and with the capability to measure heat transfer over a range of conditions. The research will focus on a turbine stator-well configuration and address the question of how heat-transfer and fluid-dynamic information can be translated into state-of-the-art, practical thermo-mechanical modelling design tools in industry. 

The project will be conducted in collaboration with Siemens, who design and manufacture industrial gas turbines for the generation of electricity, and the Thermo-Fluids Systems University Technology Centre (TFSUTC) at the University of Surrey, who are world-renowned experts in computational research. 

For more information please go to:

http://www.bath.ac.uk/mech-eng/research/turbomachinery-research-centre/

Candidate: 

Applicants should hold, or expect to receive, an undergraduate Masters first class degree or MSc distinction (or non-UK equivalent). English language entry requirements must be met at the time of application to be considered for funding, see https://www.bath.ac.uk/corporate-information/postgraduate-english-language-requirements/ 

Applications:  

Formal applications should be made via the University of Bath’s online application form for a PhD in Mechanical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form. 

https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUCE-FP01&code2=0014 

More information about applying for a PhD at Bath may be found here:

http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/ 

Funding Notes:  

Funding will cover UK/EU tuition fees, maintenance stipend £15,285 per annum (2020/2021 rate) and training support fee of £1,000 per annum for up to 3 years. EU students are eligible to apply if they have been resident in the UK for 3 years prior to the funding commencing. 

Expected start date: 28th September 2020 or earlier

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from University of Bath

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge