Back to search results

3-year PhD Studentship

University of Nottingham

Qualification Type: PhD
Location: Nottingham
Funding for: UK Students
Funding amount: Not Specified
Hours: Full Time
Placed On: 24th September 2021
Closes: 23rd December 2021
Reference: ENG1507

Applications are invited for a fully funded PhD studentship (3 years) within the Faculty of Engineering at the University of Nottingham, in collaboration with Johnson Matthey. The student will work with an interdisciplinary supervisory team with expertise in 3D printing, materials chemistry and biocatalysis.

Project title: Bioelectronic interfaces that exploit the unique optoelectronic properties of printed 2D multilayer devices

Supervisory Team: 

Engineering: Lyudmila Turyanska, Richard Hague

Pharmacy: Frankie Rawson, Veeran Chauhan

Physics: Mark Fromhold

The project will develop new bioelectronic interfaces that exploit unique properties of 3D printed multi-material devices. This will include van der Waals heterostructures comprising multiple layers of 2D materials including graphene and hexagonal boron nitride. The primary focus will be to design, fabricate, measure and optimize multi-material devices with three distinct sensing and imaging modalities, which can be utilized either independently or combined by fabricating hybrid devices with multiple functional layers for Electrical impedance tomography, Capacitive sensing and Electromagnetic detection.

The architecture of these devices will be developed for specific applications from the detection and analysis of gold nanoparticles (AuNPs) in biological systems, with an aim to translate this research to whole organism imaging using Caenorhabditis elegans. C. elegans, a free-living soil nematode, is the most completely understood animal on the planet in terms of genetics, neurology, and cell survival. Its application as a model to study complex biochemical process has gathered significant momentum due to its ease of culture (feeds on bacterial lawns on agar plates), short life-cycle (egg to adult in 3 days), optical transparency (permitting optical visualization of anatomical events) and freely available mutants (that could function as experimental controls). The aim of the project will be to determine 3D positioning of AuNPs in the nematode anatomy, monitor AuNP nanowire growth in situ as well as determine the impact of electromagnetic control on C. elegans muscle contractions due to AuNP nanowire growth.

The student will work as part of multidisciplinary team crossing the boundaries between the Centre for Additive Manufacturing (Engineering), Pharmacy and Physics. The student will benefit from training in topical research areas ranging from additive manufacturing of functional devices incorporating low dimensional materials to development of novel electropeutic strategies.

Eligibility

  • Due to funding restrictions, the position is only available for home/UK candidates
  • Candidates should have, or expect to obtain, a 1st -class or 2:1 degree in Engineering, Pharmacy, Physics, Chemistry or related discipline

How to apply

Please send a copy of your covering letter, CV and academic transcripts to cfam@nottingham.ac.uk referring to the project title.  

Closing date: applications will be evaluated on a rolling basis until a suitable candidate is appointed.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 
 
 
 
More PhDs from University of Nottingham

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge