Back to search results

PhD Studentship: Machine-learning Quantum Surrogate Models to Simulate Energy Transport Across Interfaces

University of Warwick - Centre for Doctoral Training in the Modelling of Heterogeneous Materials (HetSys), Department of Physics

Qualification Type: PhD
Location: Coventry
Funding for: UK Students, EU Students, International Students
Funding amount: The stipend is at the standard UKRI rate.
Hours: Full Time
Placed On: 5th December 2022
Closes: 31st March 2023
Reference: HP2023-17

Supervisors:

Reinhard Maurer (Chemistry), James Kermode (Engineering)

Summary:

Modern technologies such as photocatalysis or laser nanolithography involve energy transfer across interfaces. Many critical societal challenges require that we transfer light or electronic energy more efficiently into chemical energy, e.g., to utilize CO2 as renewable fuel. To achieve this, we need to understand the mechanisms behind the intricate dynamics that unfold at interfaces. Quantum mechanical simulations provide electronic-structure insights but are computationally intractable for relevant systems. The aim of this project is to create and apply machine learning models that emulate the quantum mechanical interaction of light, electrons, and atoms for many thousands of atoms at realistic interfaces.

Background:

Experimental evidence on ultrafast dynamics and transport at surfaces is notoriously hard to interpret on its own without knowledge of the nanoscale structure and electronic properties that unfold during the dynamics. First principles electronic structure methods are unable to address complex non-equilibrium dynamics at the scale of thousands to tens of thousands of atoms.

Machine learning (ML) methods are revolutionising the physical sciences, for example interatomic potential representations are becoming a common approach to accelerate molecular dynamics simulations. It was recently shown that ML methods can even reconstruct quantum mechanical Hamiltonians of molecules [1] and provide models of multiple electronic states [2]. ML-based surrogate models need to be able to replicate electronic structure results with a precision of a few meV to be reliable.

Research Questions for the project:

  • Is the ACEhamiltonians representation [3] able to capture the electronic structure and energy landscape of multicomponent interfaces and nanostructures?
  • How much training data and of which kind is required to generate a faithful and transferable representation of electronic structure of a material interface?
  • Can we use surrogate Hamiltonians to predict measurable transport coefficients and reaction rates driven by light and temperature gradients?

You will develop a new machine learning representation of quantum mechanical Hamiltonians based on the recently proposed ACEhamiltonians approach [3]. You will expand this approach to multicomponent systems with the aim to perform large-scale non-equilibrium time-dependent simulations of ultrafast energy and charge transport at interfaces. You will generate training data based on Density Functional Theory and learn how to build such models based on the Atomic Cluster Expansion (ACE) formalism [4]. Once the models are constructed and validated, you will use a recently developed molecular dynamics simulation code [5] to apply them to simulate different dynamical processes such as light-driven defect propagation and light-driven ultrafast dynamics of molecules at surfaces.

References:

[1] Schütt et al. „Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions“, Nature Commun. 10, 5024 (2019), https://www.nature.com/articles/s41467-019-12875-2

[2] Westermayr, Maurer, „Physically inspired deep learning of molecular excitations and photoemission spectra”, Chem. Sci. 12, 10755-10764 (2021), https://pubs.rsc.org/en/content/articlelanding/2021/sc/d1sc01542g

[3] Zhang et al. „ Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models”, npj Computational Materials 8, 158 (2022) https://www.nature.com/articles/s41524-022-00843-2. Implemented in ACEhamiltonians.jl package.

[4] Dusson et al. “Atomic Cluster Expansion: Completeness, Efficiency, and Stability”, J. Comput. Phys. 454, 110946 (2022), https://doi.org/10.1016/j.jcp.2022.110946

[5] Gardner et al. “NQCDynamics.jl: A Julia package for nonadiabatic quantum classical molecular dynamics in the condensed phase”, J. Chem. Phys. 156, 174801 (2022), https://pubs.acs.org/doi/abs/10.1021/acs.jctc.9b01217

For further details about the project and how it links to the training included in the HetSys PhD programme, please click here

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Warwick

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge