Back to search results

PhD Studentship: INHIBACT: Identifying Druggable Binding Sites in Computationally-Determined Models of Bacterial Membrane Proteins

University of Warwick - Department of Physics

Qualification Type: PhD
Location: Coventry
Funding for: UK Students, EU Students, International Students
Funding amount: See full advert
Hours: Full Time
Placed On: 13th December 2022
Closes: 31st March 2023
Reference: hp2023-01

Supervisors:

Phillip Stansfeld (Life Sciences\Chemistry), Livia Bartok-Partay (Chemistry)

Summary:

The field of quantum computation and simulation seeks to develop efficient quantum algorithms for problems that are classically inefficient to solve and are therefore computationally expensive. Furthermore, a quantum-enhanced simulation must not only perform a hard classical simulation efficiently, but also correctly. The latter goal is particularly important as real-world quantum computers are noisy and error prone.

This project, in collaboration with IBM Research, will develop algorithms for efficient quantum simulation for plasma and fusion physics problems, and establishing their reliability in real-world quantum computers. The project is ideal for a student interested in a close interplay of quantum computation and simulation with plasma physics.

Background:

Plasma physics and fusion science involve some of the most computationally demanding simulations in the physical sciences. Recently, a quantum algorithm has been proposed for classical plasma physics simulations such as those of the linearised Vlasov equation with a Maxwellian background distribution - a simulation that is, in fact, classically efficient [1]. Other preliminary explorations have also been undertaken [2].

In fusion science, warm dense matter (WDM) is a strongly correlated quantum system. WDM [3] is relevant for inertial confinement fusion during the solid to plasma transition driven by intense laser pulses, as well as the cores of giant planets and small stars. While quantum algorithms have been developed for simulating strongly correlated systems in condensed matter physics, such as the 2D Hubbard model, 2D XY model [4], no such algorithm exists for WDM.

Project:

This project, in collaboration with IBM Research, will develop quantum algorithms for solving the Vlasov equation going beyond the Maxwellian assumption, a regime practically relevant in high temperature tokamaks. One initial approach could be the Harrow-Hassidim-Lloyd algorithm [5], though further novel ideas will be required.

This project will also develop quantum algorithms for the simulation of WDM. There the starting point would be to evaluate the complexity of orbital-free DFT used in WDM simulations, before developing quantum Hamiltonian simulation algorithms.

Real-world quantum computers on which the above simulations are expected to run are improving in size and performance but remain noisy. It is thus crucial to quantify the reliability of their outputs. This project will do so by developing quantum accreditation [6] methods for the developed algorithms.

[1] A. Engel, G. Smith, S. E. Parker, Physical Review A, 100, 062315, (2019)

[2] I. Y. Dodin, E. A. Startsev, Physics of Plasmas 28, 092101 (2021)

[3] B. Larder et al., Science Advances, 5, eaaw1634, (2019)

[4] T. S. Cubitt et al., Proceedings of the National Academy of Sciences, 115, 9497, (2018)

[5] A. W. Harrow, A. Hassidim, S. Lloyd, Physical Review Letters, 103, 150502, (2009)

[6] S. Ferracin, S. T. Merkel, D. McKay, A. Datta, Physical Review A, 104, 042603, (2021)

For further details about the project and how it links to the training included in the HetSys PhD programme, please visit:

INHIBACT: Identifying druggable binding sites in computationally-determined models of bacterial membrane proteins (warwick.ac.uk)

Funding

Awards for both UK residents and international applicants pay a stipend to cover maintenance as well as paying the university fees and a research training support. The stipend is at the standard UKRI rate. For more details visit: https://warwick.ac.uk/fac/sci/hetsys/apply/funding/

If you’re from outside the UK, the final application deadline for all courses starting in September/October is 23:59 (GMT) on 25 January 2023.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Warwick

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge