Back to search results

Fully Funded UKRI & Swansea PhD Scholarship: Deep-learning Accelerated Computational Fluid Dynamic Model for Pollutant Dispersion in Urban Environment

Swansea University - Civil Engineering

Qualification Type: PhD
Location: Swansea
Funding for: UK Students
Funding amount: £17,668 per annum
Hours: Full Time
Placed On: 24th February 2023
Closes: 5th May 2023

Funding providers: UKRI and Swansea University

Subject areas: Computational Engineering/ Machine Learning

Project start date: 1st July 2023 (Enrolment open from mid–June)

Project description: 

Exposure to hazardous substances from manufacturing, storage and transport poses significant risk to public health and to the environment. Planning control of hazardous substances has been one of the main strategies at different national agencies (e.g. Environmental Agency) to understand the associated risks during the planning phase as well as the operational stage of both new and existing facilities. Apart from extensive networks of physical sensors being deployed island-wide to monitor air quality and pollutants, numerical models of pollutant dispersion for planning and operational purposes have been used. The current industrial numerical approaches are often fast to provide predictions; they are, however, much less accurate due to inherent assumptions and simplifications embedded in those models. There exists a class of higher fidelity methodologies for the prediction of pollutant dispersion using computational fluid dynamic (CFD) approaches. Unfortunately, the CFD-based models are resource intensive and time-consuming to execute; thus, rendering them impractical for industrial usage. The current proposal aims at addressing this gap by developing a fast CFD-based approach for prediction of pollutant dispersion.

Computational methods for predicting complex unsteady flows are computationally demanding, while full-field experimental methods are very expensive. This project is at the forefront of the emerging field of machine learning and data-driven computational modelling. The project aims at developing unique new models to predict fluid mechanic characteristics by integrating advances in high order CFD techniques for simulations of urban flows with accuracy and robustness The aim is to build a surrogate model for wind wake prediction using high fidelity CFD data - thus taking into account the effects of the urban built environment (i.e. buildings and greenery). This development will form a fundamental building block for the hybrid platform on pollutant dispersion monitoring and response.

The resulting learning-based models will vastly reduce the computational cost of running CFD simulations. This reduction in cost will expand the potential applications of CFD into new areas such as generative design, digital twins, life-cycle forecasting for engineering structures and inverse problems.

Eligibility

Candidates must normally hold an undergraduate degree at 2.1 level (or Non-UK equivalent as defined by Swansea University) in Engineering or similar relevant science discipline.

English Language requirements: If applicable – IELTS 6.5 overall (with at least 5.5 in each individual component) or Swansea recognised equivalent.

Due to funding restrictions, this scholarship is open to applicants eligible to pay tuition fees at the UK rate only, as defined by UKCISA regulations.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from Swansea University

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge