Back to search results

PhD Studentship: Machine Learning approaches to estuarine and coastal ecosystem health

University of Exeter - Mathematics

Qualification Type: PhD
Location: Exeter
Funding for: UK Students, EU Students, International Students
Funding amount: From £17,668 per annum
Hours: Full Time
Placed On: 4th May 2023
Closes: 31st May 2023
Reference: 4784

Project Title: Machine Learning approaches to estuarine and coastal ecosystem health

Location:

Centre for Doctoral Training in Environmental Intelligence, Streatham Campus, Exeter

The University of Exeter’s Centre for Doctoral Training in Environmental Intelligence, in partnership with the Plymouth Marine Lab, is inviting applications for a fully-funded PhD studentship to commence in September 2023. The successful applicant will join the UKRI CDT in Environmental Intelligence, and will be included in CDT cohort building and training activities.  The successful applicant will work on the below project under the supervision of Peter Challenor and Daniel Williamson (University of Exeter), with additional supervision and support from Plymouth Marine Lab.

Project Description:

Advances in hydrodynamic and biogeochemical modelling are dramatically increasing our ability to model marine coastal areas at unprecedented detail. Such operational models can provide real-time information about coastal conditions like currents, suspended sediment concentrations and biogeochemical parameters such as chlorophyll-a concentrations, plankton biomass and nutrients. These models, while highly sophisticated, can still suffer from structural uncertainty, parameter uncertainty or initial condition uncertainty which can limit their uptake.

Additionally, their high computational cost also restricts their use in scenario and/or ensemble mode. On the other hand, our ability to efficiently monitor the vast number of ecosystem processes is still very limited. The ability to combine scarce data with “imperfect” models promises to improve our understanding of marine ecosystems and will play a significant role in our ability to monitor our coasts to fulfil environmental regulations and UK’s implementation of climate legislation to reduce carbon emissions.

We propose to develop new approaches of data blending that are operational feasible and suitable for exploring a wide range of policy and climate scenarios as well as contribute to regular monitoring of the health of our coast. The candidate will develop light weight emulators for the Tamar Estuary to act as an interface for an eventual Digital Twin of the biogeochemistry of the area. The emulators will be designed to predict from potentially observable inputs (remote sensing, distributed network of in-water sensors) key indicators of estuarine conditions, such as nutrients, biological production, CO2 air-sea fluxes and bottom oxygen concentrations.

Furthermore, the emulators will determine the requirements on the satellite (low-resolution) as well as in situ observing networks (variables and locations) that enable skilled prediction of those environmental indicators.

Finally, these emulators should be capable of addressing what-if type scenarios related to:

  1. land use changes by its impacts on nutrients,
  2. population growth by its impacts on nutrients via waste waters,
  3. the impact of climate change on estuarine productivity and hypoxia through increase of winter storms and river flows, as well as through increased thermal stratification and sea level rise. 
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Exeter

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge