Back to search results

PhD Studentship: NERC GW4+ DTP PhD Studentship for 2024 Entry - Causal Graph of Cloud Controlling Factors

University of Exeter - Department of Mathematics

Qualification Type: PhD
Location: Exeter
Funding for: UK Students, EU Students, International Students
Funding amount: From £18,622
Hours: Full Time
Placed On: 3rd November 2023
Closes: 9th January 2024
Reference: 4967

About the Partnership

This project is one of a number that are in competition for funding from the NERC Great Western Four+ Doctoral Training Partnership (GW4+ DTP).  The GW4+ DTP consists of the Great Western Four alliance of the University of Bath, University of Bristol, Cardiff University and the University of Exeter plus five Research Organisation partners:  British Antarctic Survey, British Geological Survey, Centre for Ecology and Hydrology,  the Natural History Museum and Plymouth Marine Laboratory.  The partnership aims to provide a broad training in earth and environmental sciences, designed to train tomorrow’s leaders in earth and environmental science.

Project Background

The cloud controlling factors framework is an empirical approach for expressing meso- and largescale cloudiness in terms of the local environmental “factors”. These factors are simpler quantities (when compared to cloudiness), such as temperature or wind speed, and are generally called cloud controlling factors [1, 2, 3], CCF for short. Existing approaches to CCF focused on expressing cloudiness as a linear regression of the factors. This is sometimes useful, because the factors are much simpler to understand, and understand their response to warming, than cloudiness is. But CCF has some major downsides. For example, the framework cannot highlight causal relationships, only statistical connections. This is a downside because one needs causal (directional) information to build a physical theory. Additionally, because the factors co-vary strongly with each other, this leads to spurious correlations and misleading connections between factors and cloudiness.

Project Aims and Methods

The main goal of the project is to provide a better understanding of how cloudiness affects, and is affected by, related environmental factors. Success of this goal will be of benefit to a wide range of scientific communities, because the interactions of clouds with the mean climate is consistently the most difficult aspect of climate change to estimate correctly. Here, we aim to apply advanced data analysis techniques to provide a more rigorous, and more statistically significant framework for understanding the connections between clouds and climate. The proposed methodology for the project is to use Causal Timeseries Analysis (CTSA) [4, 5] to create a causal graph for large-scale cloudiness, its dependence, and its effect on the related environmental factors. Causal graphs are sketches of the causal connections in a set of dynamic variables and can be created from observed timeseries. CTSA overcomes the aforementioned major downsides of existing approaches to CCFs, and can provide the necessary information to develop a theoretical framework for how large scale cloudiness is connected with the rest of the climate system.

We strongly encourage the student to involve themselves in both the design of the numerical analysis pipeline of CTSA, but more importantly, to also propose alternative ways we may quantify the relation of cloudiness with the environmental factors in more rigor than the existing CCF approaches.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Exeter

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge