Back to search results

PhD Studentship: Coupling Micromechanical and Molecular Models to Optimize Polymer Composites

The University of Manchester

Qualification Type: PhD
Location: Manchester
Funding for: UK Students
Funding amount: £18,622 fully funded project covers home fees and an annual stipend set at the UKRI rate (award for 23/24).
Hours: Full Time
Placed On: 4th January 2024
Closes: 29th February 2024

To apply, please click the 'Apply' button, above.

The fully funded project covers home fees and a stipend set at the UKRI rate (£18,622 for 23/24).

A fully funded PhD position in multiscale modelling of polymer composites is available in the group of Professor Carbone at the University of Manchester from September 2023.

Accurate modelling of the mechanical behaviour of elastomeric materials including microscale filler particles represents a challenge in terms of the range of length scales involved. This difficulty arises because the macroscopic continuum-scale properties are strongly influenced by chemical and physical interactions at the atom-scale and mesoscale. Modelling of these materials is affected by the choice of filler particles, the particle size distribution, the percentage filler content in addition to manufacturing processes employed for the bulk material.

This PhD project will tackle example material systems using a combination of molecular dynamics computation and continuum modelling. The aim is to characterise the local mechanical properties that result from interaction between the microscale filler particle surfaces and the surrounding polymer. An example elastomer of interest is PDMS, whereas the filler particles may be glass, a thermoplastic, or an inorganic species. These properties will inform a description of the interface regions around filler particles, the properties of which vary according to distance from the filler surfaces and the nature of the surrounding polymer. The localised mechanical parameters and the nature of the interface region will then be used to develop constitutive relations within micro-mechanical models of the composite and homogenization from the mesoscale to the continuum scale, allowing the prediction of the linear elastic (low strain deformation) region of stress / strain curves. These models could potentially aid in the design and down-selection of new materials with optimised or novel properties

The project will involve the use of molecular dynamics, micromechanical models and machine learning methods and it is co-sponsored by Continental. The student will have the opportunity to work closely with the scientists in the mathematical department and AWE which is sponsoring the project.

Informal enquiries can be sent along with a CV to paola.carbone@manchester.ac.uk

Eligibility criteria: the fellowship is available for home students only, although international students with a strong CV in simulations are also welcome to send informal enquires.

To be considered home student you must meet one of these criteria:

  • Be a UK national (meeting residency requirements)
  • Have settled status
  • Have pre-settled status (meeting residency requirements)
  • Have indefinite leave to remain or enter.
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from The University of Manchester

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge