Back to search results

Gladden/Mantle Studentship (Fixed Term)

University of Cambridge - Department of Chemical Engineering and Biotechnology

Qualification Type: PhD
Location: Cambridge
Funding for: UK Students, EU Students, International Students
Funding amount: Not Specified
Hours: Full Time
Placed On: 8th April 2024
Closes: 16th May 2024
Reference: NQ41174

Two fully funded 3.5 year Ph.D studentships are available to UK nationals and outstanding international students, with Professors Lynn Gladden, Mick Mantle and Andy Sederman, to start 1st October 2024.

The projects will be based around the development of advanced magnetic resonance techniques to optimise heterogenous catalysts and the operation of the reactor in which the catalysis occurs. Two projects are being funded, one focussing more on the development of magnetic resonance methods to study the fundamentals of molecular transport and reaction processes in catalysts, while the other project focusses more on understanding the Fischer-Tropsch catalytic process and associated reactions for the production of Sustainable Aviation Fuels and other sustainable chemicals which will play an important role in delivering the energy transition to net zero.

Over the past 5 years the group has designed and commissioned fixed-bed reactors that operate at industrial conditions inside a magnetic resonance imaging (MRI) system. During this period, we have developed a number of advanced magnetic resonance imaging protocols that yield spatially-resolved chemical mapping and transport measurements to learn how catalysts behave when they are working inside a reactor at realistic industrial operating conditions. The two projects are inter-related but one is designed more on development of new magnetic resonance methods, while the other focusses on applying new and existing magnetic resonance methods to immediate research challenges in heterogeneous catalysis. In particular, the two projects will include:

New magnetic resonance methods to study the fundamentals of catalysis Central to the design of producing new catalytic processes is to understand how reactants are converted to products with the pore space of catalyst pellets. To do this we need to develop magnetic resonance imaging methods that spatially resolve chemical species present with the catalyst pellet while the conversion is occurring. This, in turn, will be controlled by the way the reactant and product molecules move (diffuse) with the pellet and the influence of non-isothermal behaviour occurring during the reaction processes. The project aims will be to develop advanced magnetic resonance imaging tools that:

(i) Map chemical composition and molecular transport at 100 micron resolution in all 3 spatial dimensions?

(ii) Spatially map variations in temperature within a catalyst pellet as reaction proceeds

Operando studies of Fischer-Tropsch catalysis The group has developed a number of magnetic resonance methods to study the evolution of product distribution within a working reactor environment. We now want to extend these studies to explore how catalyst behaviour changes as the structure and chemistry of the catalyst is changed. The aim is to explore how the formulation and physical structure of the catalyst, alongside the reactor operating conditions can control the products of the reaction. By imaging what is actually happening inside the catalyst and reactor we aim to develop a more science-based approach to the design of catalyst pellets and reactor operation.

Applicants for the studentships should have a First Class (or a high 2:1) or equivalent degree in a relevant discipline such as chemical engineering, engineering, chemistry or physics. To be considered for this studentship, applicants must submit a formal application for admission along with all required supporting documents. Late or incomplete applications will not be considered.

Fixed-term: The funds for this post are available for 3.5 years in the first instance.

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from University of Cambridge

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge