Back to search results
Header Image

PhD Studentship: Development of Large Language Models for Guiding Net Zero Building Design

Birmingham City University – College of Built Environment in the Faculty of Computing, Engineering and the Built Environment (CEBE)

We are excited to announce that the Associate Dean of Research within the Faculty of Computing, Engineering and the Built Environment at Birmingham City University is extending an invitation for a prestigious PhD scholarship, scheduled to commence in February 2025.

How to Apply  

To apply, please follow the below steps:

  • Complete the BCU online application form.
  • Complete the project proposal form, in full, ensuring that you quote the project ID. You will be required to upload your proposal in place of a personal statement on the BCU online application form.
  • Upload two references to your online application form (at least one of which must be an academic reference).
  • Upload your qualification(s) for entry onto the research degree programme. This will be Bachelor/Master’s certificate(s) and transcript(s).
  • International applicants must also provide a valid English language qualification. Please see the list of English language qualifications accepted here. Please check the individual research degree course page for the required scores. 

Please note: We will not be able to consider any applications for this funded project that do not include the correct project reference in their project proposal form.

Project Title: Development of Large Language Models for Guiding Net Zero Building Design

Project Lead: Professor Franco Cheung

Project Reference: CEBE-FC-ANODE

Project Description:

This research project aims to guide the design of environmentally friendly, energy-efficient buildings, otherwise known as Net Zero Energy Buildings (NZEB). The design process for these buildings is complex and time-consuming, as it involves understanding various aspects like energy use, environmental impact, and long-term costs. 

Our goal is to create an artificial intelligence (AI) program that can make this process easier. This AI will be trained to understand building designs and provide all the necessary information for NZEB design.

The first step is to develop a common language that can be understood by both the AI and the building designs. Once that is established, we'll train the AI using these corpora and a variety of building designs along with their NZEB assessment data. 

With this AI assistant, we hope to streamline the NZEB design process. This means architects and engineers can quickly access all the necessary information they need for their designs. The ultimate goal is to make the design process of environmentally friendly buildings more efficient and less time-consuming, thereby contributing to a more sustainable future.

Anticipated Findings and Contribution to Knowledge

This research extends the integration of AI in the building design field, particularly within advanced design and management tools like BIM and digital twins. It aims to deliver a transformative approach to Net Zero Emissions Buildings (NZEB) design, introducing an AI model that understands building designs and provides vital NZEB assessment information. This innovation is expected to streamline the assessment process, offering instant access to accurate data, increasing assessment reliability, and reducing manual workload.

Beyond immediate applications, this research significantly contributes to two prominent areas: The integration of generative design technology in Building Information Modelling (BIM) and the advancement of digital twins as decision-making tools.

In the context of BIM, the AI model will enhance the generative design process. Generative design uses algorithms to create optimized design options, relying heavily on accurate data. Our AI model is designed to efficiently populate BIM models with necessary data, fostering a more efficient workflow, and enhancing generative design's contribution to NZEB goals.

For digital twins, virtual replicas of physical structures, the proposed AI model becomes instrumental. These digital counterparts require precise, real-time data. The model specifically focuses on simplifying the interpretation of building design language and generating essential NZEB assessment data. This contribution ensures that digital twins accurately capture the sustainability features of physical buildings, thereby enhancing their functionality as a robust decision-making tools.

Person Specification

We invite high-calibre graduates with a first-class BSc (Hons) or MSc in Computer Science, Building Information Modelling and Digital Construction or related fields to apply for this prestigious PhD studentship.

Ideal candidates will possess a robust understanding of Natural Language Processing and Large Language Models.

In your application, please articulate your relevant experience in Artificial Intelligence and Machine Learning, highlighting how your background aligns with the requirements of this position. This opportunity is tailored for individuals eager to advance in cutting-edge research domains.

International applicants must also provide a valid English language qualification, such as International English Language Test System (IELTS) or equivalent with an overall score of 6.5 with no band below 6.0.

To discuss this project, please contact:

Professor Franco Cheung, franco.cheung@bcu.ac.uk 

Funding Details

This funding model includes a 36 month fully funded PhD Studentship. The Studentship falls in-line with the UK Research and Innovation rates for 2024 – 2025, which is £19,237 per year. This tax-free stipend is paid monthly. The Studentship also includes a full-time Tuition Fee Scholarship for up to 3 years, subject to you making satisfactory progression within your PhD.   

All applicants will receive the same stipend irrespective of fee status.  

Application Closing Date: 23:59 on Tuesday 1st October 2024 for a start date of the 3rd February 2025.

Location of Job

Faculty of Computing, Engineering and Built Environment, City Centre Campus, Curzon Street, B4 7XG

Qualification Type: PhD
Location: Birmingham
Funding for: UK Students, EU Students, International Students
Funding amount: £19,237
Hours: Full Time
Placed On: 17th September 2024
Closes: 1st October 2024
Reference: CEBE-FC-ANODE
   
We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Show all PhDs for Birmingham City University …
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge