Back to search results

PhD Studentship: Upscaling Morphing in Biological Structures

The University of Edinburgh

Qualification Type: PhD
Location: Edinburgh
Funding for: UK Students, EU Students, International Students
Funding amount: Not Specified
Hours: Full Time
Placed On: 4th April 2024
Closes: 6th May 2024

Continuum mechanics approaches have been used to model the mechanical behaviour of biological (and active) systems at length scales that are large enough.

For example, when analysed at the micron-scale, biological membranes can be treated as continuum objects that deform regulated by effective properties such as curvature mismatch or active forces. Those effective properties depend on how their fundamental constituents, such as lipids and proteins, evolve at the nano-scale.

Continuum modelling approaches have been able to improve the understanding of the behaviour of biological materials, showing the critical role of mechanics in processes like growth and remodelling, but they have two major limitations:

  1. They rely on phenomenological assumptions, such as the parameters that describe mechanical properties or active behaviour.
  2. Biological materials are fundamentally discrete, thus making the continuum approaches fail when moving at length scales that are not large enough, i.e. the micro-to-nano boundary in the case of biological membranes.

The project focuses on providing a link between the microscopic (discrete) nature and the macroscopic (continuum) modelling of biological structures with the double-pronged aim to improve the understanding of the two limitations described above: (i) to provide a quantitative relation between the lumped parameters used in the continuum description and the microscopic mechanics from which they originate them; (ii) to reveal what scale is large enough for the continuum approaches cannot be used.

The project aims to develop new theories to understand the root causes of the active morphing of two-dimensional biological membrane-like structures.

The project involves three aspects:

  1. Theoretical continuum modelling. Starting from the well-known description of the mechanics of two-dimensional bodies, we update this passive description by using effective modelling (like negative capillarity or curvature control) to investigate the competition between bulk elasticity and active control on the global morphing of slender objects.
  2. Theoretical discrete modelling. Providing potential modelling ways to couple microscopic features, like the distribution of proteins, the evolution of chemicals and the presence of defects, and macroscopic mechanics.
  3. Numerical study. Implementation of the models produced into numerical codes.

During this project, you will be part of the Institute for Infrastructure and Environment. You will join a vibrant community of PhD students, postdoctoral research associates and academics.

For informal enquiries please contact Dr Matteo Taffetani (matteo.taffetani@ed.ac.uk)

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):

Location(s):

PhD tools
 

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Ok Ok

PhD Alert Created

Job Alert Created

Your PhD alert has been successfully created for this search.

Your job alert has been successfully created for this search.

Manage your job alerts Manage your job alerts

Account Verification Missing

In order to create multiple job alerts, you must first verify your email address to complete your account creation

Request verification email Request verification email

jobs.ac.uk Account Required

In order to create multiple alerts, you must create a jobs.ac.uk jobseeker account

Create Account Create Account

Alert Creation Failed

Unfortunately, your account is currently blocked. Please login to unblock your account.

Email Address Blocked

We received a delivery failure message when attempting to send you an email and therefore your email address has been blocked. You will not receive job alerts until your email address is unblocked. To do so, please choose from one of the two options below.

Max Alerts Reached

A maximum of 5 Job Alerts can be created against your account. Please remove an existing alert in order to create this new Job Alert

Manage your job alerts Manage your job alerts

Creation Failed

Unfortunately, your alert was not created at this time. Please try again.

Ok Ok

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

Create PhD Alert

Create Job Alert

When you create this PhD alert we will email you a selection of PhDs matching your criteria.When you create this job alert we will email you a selection of jobs matching your criteria. Our Terms and Conditions and Privacy Policy apply to this service. Any personal data you provide in setting up this alert is processed in accordance with our Privacy Notice

 
 
 
More PhDs from The University of Edinburgh

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended

jobs.ac.uk has been optimised for the latest browsers.

For the best user experience, we recommend viewing jobs.ac.uk on one of the following:

Google Chrome Firefox Microsoft Edge