Back to search results

PhD Studentship: Development of an in-situ Oil Conversion Process to Generate Clean Hydrogen

University of Birmingham

Qualification Type: PhD
Location: Birmingham
Funding for: UK Students, EU Students
Funding amount: Not Specified
Hours: Full Time
Placed On: 25th June 2019
Closes: 31st August 2019

Prof Joe Wood

Prof Sean Rigby (University of Nottingham)

NERC/NPIF and School of Chemical Engineering studentship and stipend (UKRI rates). 

This project is part of the NERC CDT in Oil and Gas

The candidate will take part in training courses in oil, gas, and related personal skills as listed on  However note that this project is starting at a later time (October 2019 or before) when the full range of training courses may not be available, and thus only a selection will be offered.

Future energy demands are set to change the types of fuel required from fossil oils to cleaner products via hydrogen economy.  However there are still large reserves of light oil, heavy oil, bitumen, shale gas and shale oil, in Canada, Venezuela and partially recovered reservoirs in the North Sea.  We aim to develop a down-hole process that could convert reserves of light-medium as well as heavy oils into hydrogen as a source for vehicles and H-economy.  The process must be performed in a way to minimise the environmental impact, such as production of greenhouse gases and polluted water.  Our prior experience of downhole processes was focussed in-situ combustion methods such as Toe-to-Heel Air Injection and its catalytic add-on CAPRI, which use a downhole catalyst to upgrade heavy oil.  However, we now aim to produce gaseous hydrogen rather than a liquid product, with the research having synergies with the H2 fuel centre at Birmingham. Limitations of deploying existing catalysts downhole include extensive coking and deactivation, which hinders their effectiveness.  If hydrogen could be generated in-situ, this would reduce the costs and limit further greenhouse gas emissions associated with production above surface.  This project aims to generate in-situ hydrogen via a downhole conversion process using steam reforming, enabled by metals in the reservoir such as nickel being formulated into a reforming catalyst.  Specific aims will be to 1 Develop reservoir simulations using STARS to represent in-situ oil upgrading and steam reforming reactions, and plume behaviour of produced hydrogen. 2 Simulate the conversion of oils under well conditions to determine the gas composition, yield of hydrogen, coke deposit using published reaction kinetics. 3 Optimise the in-well conditions and heating technologies to minimise the production of greenhouse gases and energy input requirements and assess the economic and environmental impacts of the process.  The project will consider the influence of reservoir geology on the process, the impact of downhole processing on the rocks, and the potential for environmental critical incidents.

The Birmingham-Nottingham team have been working on heavy oil extraction using THAI-CAPRI for 10 years.  The student will join a lively team of collaborators, including STARS software modellers at Nottingham, who can provide advice. The NERC students will retain distinction in terms of their study of the upstream and environmental aspects, in the context of reservoir geology

The 4-year project would suit a highly motivated candidate with a first degree in Chemical Engineering, Earth Sciences or related numerate subject, holding a 2:1 honours degree or above,  interested in and have aptitude for computer modelling.  Due to NERC requirements the funding is available to UK/EU students who have been resident in the UK for at least 3 years. Enquiries to Prof. Joe Wood (

We value your feedback on the quality of our adverts. If you have a comment to make about the overall quality of this advert, or its categorisation then please send us your feedback
Advert information

Type / Role:

Subject Area(s):


PhD tools
More PhDs from University of Birmingham

Show all PhDs for this organisation …

More PhDs like this
Join in and follow us

Browser Upgrade Recommended has been optimised for the latest browsers.

For the best user experience, we recommend viewing on one of the following:

Google Chrome Firefox Microsoft Edge