| Qualification Type: | PhD |
|---|---|
| Location: | Birmingham |
| Funding for: | UK Students, EU Students, International Students |
| Funding amount: | £20,780 per year |
| Hours: | Full Time |
| Placed On: | 22nd December 2025 |
|---|---|
| Closes: | 19th March 2026 |
Are you passionate about the reduction of aircraft noise? Do you want to contribute to cutting-edge research that will lead to silent airfoil design?
Applications are invited for a 3.5-year UK PhD studentship for the project “High-Fidelity Simulation of Noise Generation by Turbulent Flows Passing over Flexible Aerofoil Trailing Edge” to discover the secret of silent flight of owls in the research group of Dr Zhong-Nan Wang at UoB. The research of the group is focused on developing high-fidelity CFD and data-driven approaches for aerodynamics and aeroacoustics. The PhD project is expected to start in September 2025. The successful applicant will receive an annual tax-free stipend of £20,780 per year, payment of tuition fee up to 3.5 years and additional travel funding.
Project details:
Noise pollution is a growing environmental issue and has become the second-largest environmental cause of health problems in Europe, just after air pollution. Among the environmental noise sources, aerofoil noise is one of the major contributors, including noise from aircraft wing, aeroengine fan and wind turbines. Therefore, it is crucial to effectively reduce them for a quiet living environment.
In nature, the owl is one of the birds that can fly almost silently. Its wings have several features that help to reduce the noise, such as feather fringe and comb [1]. Among them, elasticity is identified to play a key role in reducing noise. Theoretical modelling has shown that the noise generation by scattering turbulent fluctuations at an elastic trailing ledge can change the velocity scaling from 5 to 7 [2]. This indicates low noise emission at a low Mach number compared to a rigid trailing edge. However, the elasticity effect on hydrodynamics, how the turbulent boundary layer will be affected by the elastic trailing edge before being scattered acoustically, has not been fully known. This could subsequentially affect the acoustic scattering and could also potentially be affected by the generated noise, establishing a feedback loop by these flow-acoustics interactions. In this study, we will extend our high-fidelity aeroacoustics simulation framework [3] to further model the elastic airfoil trailing edge and study the interactions of flexible trailing edge with both hydrodynamics and acoustics. The simulation results will be analyzed and compared with analytical models, and then inform a refined low-order taking flow-structure-acoustics interactions into account with data-driven method. This research is inherently multidisciplinary, lying at the interface of fluid and solid mechanics, acoustics, and computing science. It will potentially improve our current understanding of the silent flight of owls by uncovering the full mechanisms of noise reduction by flexible trailing edge and eventually inspire the innovative design of quiet airfoils by tuning the elasticity of the trailing edge.
Requirements:
The candidate will have a 1st class undergraduate or Master’s degree (or equivalent) in Physics, Mathematics, Mechanical or Aerospace Engineering, Computer Science or a related discipline. You should be highly motivated, and would be able to work independently as well as collaborate with others with effective written/oral communication skills. Knowledge of fluid mechanics or CFD is essential. Experience in programming (Fortran/C++/Python) and knowledge of acoustics and solid mechanics would be desirable.
To apply, please provide a cover letter summarizing your research interests and suitability for the position, the contacts of two referees and a curriculum vitae by email to Dr Zhong-Nan Wang (z.n.wang@bham.ac.uk) via the above 'Apply' button.
Type / Role:
Subject Area(s):
Location(s):